[Elasticsearch] 多字段搜索 (五) – 以字段为中心的查询

释放双眼,带上耳机,听听看~!

以字段为中心的查询(Field-centric Queries)

上述提到的三个问题都来源于most_fields是以字段为中心(Field-centric),而不是以词条为中心(Term-centric):它会查询最多匹配的字段(Most matching fields),而我们真正感兴趣的最匹配的词条(Most matching terms)。

NOTE

best_fields同样是以字段为中心的,因此它也存在相似的问题。

首先我们来看看为什么存在这些问题,以及如何解决它们。

问题1:在多个字段中匹配相同的单词

考虑一下most_fields查询是如何执行的:ES会为每个字段生成一个match查询,让后将它们包含在一个bool查询中。

我们可以将查询传入到validate-query API中进行查看:


1
2
3
4
5
6
7
8
9
10
11
1GET /_validate/query?explain
2{
3  "query": {
4    "multi_match": {
5      "query":   "Poland Street W1V",
6      "type":    "most_fields",
7      "fields":  [ "street", "city", "country", "postcode" ]
8    }
9  }
10}
11

它会产生下面的解释(explaination):

(street:poland street:street street:w1v) (city:poland city:street city:w1v) (country:poland country:street country:w1v) (postcode:poland postcode:street postcode:w1v)

你可以发现能够在两个字段中匹配poland的文档会比在一个字段中匹配了poland和street的文档的分值要高。

问题2:减少长尾

精度控制(Controlling Precision)一节中,我们讨论了如何使用and操作符和minimum_should_match参数来减少相关度低的文档数量:


1
2
3
4
5
6
7
8
9
10
11
1{
2    "query": {
3        "multi_match": {
4            "query":       "Poland Street W1V",
5            "type":        "most_fields",
6            "operator":    "and",
7            "fields":      [ "street", "city", "country", "postcode" ]
8        }
9    }
10}
11

但是,使用best_fields或者most_fields,这些参数会被传递到生成的match查询中。该查询的解释如下(译注:通过validate-query API):

(+street:poland +street:street +street:w1v) (+city:poland +city:street +city:w1v) (+country:poland +country:street +country:w1v) (+postcode:poland +postcode:street +postcode:w1v)

换言之,使用and操作符时,所有的单词都需要出现在相同的字段中,这显然是错的!这样做可能不会有任何匹配的文档。

问题3:词条频度

什么是相关度(What is Relevance)一节中,我们解释了默认用来计算每个词条的相关度分值的相似度算法TF/IDF:

词条频度(Term Frequency)


1
2
3
1在一份文档中,一个词条在一个字段中出现的越频繁,文档的相关度就越高。
2
3

倒排文档频度(Inverse Document Frequency)


1
2
3
1一个词条在索引的所有文档的字段中出现的越频繁,词条的相关度就越低。
2
3

当通过多字段进行搜索时,TF/IDF会产生一些令人惊讶的结果。

考虑使用first_name和last_name字段搜索"Peter Smith"的例子。Peter是一个常见的名字,Smith是一个常见的姓氏 – 它们的IDF都较低。但是如果在索引中有另外一个名为Smith Williams的人呢?Smith作为名字是非常罕见的,因此它的IDF值会很高!

像下面这样的一个简单查询会将Smith Williams放在Peter Smith前面(译注:含有Smith Williams的文档分值比含有Peter Smith的文档分值高),尽管Peter Smith明显是更好的匹配:


1
2
3
4
5
6
7
8
9
10
1{
2    "query": {
3        "multi_match": {
4            "query":       "Peter Smith",
5            "type":        "most_fields",
6            "fields":      [ "*_name" ]
7        }
8    }
9}
10

smith在first_name字段中的高IDF值会压倒peter在first_name字段和smith在last_name字段中的两个低IDF值。

解决方案

这个问题仅在我们处理多字段时存在。如果我们将所有这些字段合并到一个字段中,该问题就不复存在了。我们可以向person文档中添加一个full_name字段来实现:


1
2
3
4
5
6
1{
2    "first_name":  "Peter",
3    "last_name":   "Smith",
4    "full_name":   "Peter Smith"
5}
6

当我们只查询full_name字段时:

  • 拥有更多匹配单词的文档会胜过那些重复出现一个单词的文档。
  • minimum_should_match和operator参数能够正常工作。
  • first_name和last_name的倒排文档频度会被合并,因此smith无论是first_name还是last_name都不再重要。

尽管这种方法能工作,可是我们并不想存储冗余数据。因此,ES为我们提供了两个解决方案 – 一个在索引期间,一个在搜索期间。下一节对它们进行讨论。

给TA打赏
共{{data.count}}人
人已打赏
安全运维

OpenSSH-8.7p1离线升级修复安全漏洞

2021-10-23 10:13:25

安全运维

设计模式的设计原则

2021-12-12 17:36:11

个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索