上一篇我们讲到了,对于什么样的场景该建立什么类型的索引字段,以及我们使用sql查询的一些基本优化原则。那么这一篇除了会进一步讲到更加复杂的查询场景的一些优化方法,还会针对一些实际的场景做一些sql运行实践做深入分析,来针对性的诊断出对应的问题瓶颈,通过分析会采用什么样的方法对其调优。
目录
工具利器:工欲善其事必先利其器
场景分析:奇淫技巧
my.cnf参数配置:终极大法
工具利器:工欲善其事必先利其器
(一) 启动mysql慢查询
1
2
3
4
5
6
7 1vim /etc/my.cnf
2[mysqld]
3slow-query-log = on # 开启慢查询功能
4slow_query_log_file = /usr/local/mysql/data/slow-query.log # 慢查询日志存放路径与名称
5long_query_time = 5 # 查询时间超过5s的查询语句
6log-queries-not-using-indexes = on # 列出没有使用索引的查询语句
7
(二) 使用EXPLAIN关键字检测查询
使用EXPLAIN关键字可以让你知道MySQL是如何处理你的SQL语句的。这可以帮你分析你的查询语句或是表结构的性能瓶颈。
EXPLAIN的查询结果还会告诉你你的索引主键被如何利用的,你的数据表是如何被搜索和排序的……等等,等等。
挑一个你的SELECT语句(推荐挑选那个最复杂的,有多表联接的),把关键字EXPLAIN加到前面。你可以使用phpmyadmin来做这个事。然后,你会看到一张表格。下面的这个示例中,我们忘记加上了group_id索引,并且有表连接:
当我们为group_id字段加上索引后:
我们可以看到,前一个结果显示搜索了7883行,而后一个只是搜索了两个表的9和16行。查看rows列可以让我们找到潜在的性能问题。
场景分析:奇淫技巧
1.为查询缓存优化你的查询
大多数的MySQL服务器都开启了查询缓存。这是提高性最有效的方法之一,而且这是被MySQL的数据库引擎处理的。当有很多相同的查询被执行了多次的时候,这些查询结果会被放到一个缓存中,这样,后续的相同的查询就不用操作表而直接访问缓存结果了。
这里最主要的问题是,对于程序员来说,这个事情是很容易被忽略的。因为,我们某些查询语句会让MySQL不使用缓存。请看下面的示例:
上面两条SQL语句的差别就是CURDATE(),MySQL的查询缓存对这个函数不起作用。所以,像NOW()和RAND()或是其它的诸如此类的SQL函数都不会开启查询缓存,因为这些函数的返回是会不定的易变的。所以,你所需要的就是用一个变量来代替MySQL的函数,从而开启缓存。
2.当只要一行数据时使用LIMIT1
当你查询表的有些时候,你已经知道结果只会有一条结果,但因为你可能需要去fetch游标,或是你也许会去检查返回的记录数。
在这种情况下,加上LIMIT 1可以增加性能。这样一样,MySQL数据库引擎会在找到一条数据后停止搜索,而不是继续往后查少下一条符合记录的数据。
下面的示例,只是为了找一下是否有“中国”的用户,很明显,后面的会比前面的更有效率。(请注意,第一条中是Select *,第二条是Select 1)
php程序员站
3.为搜索字段建索引
索引并不一定就是给主键或是唯一的字段。如果在你的表中,有某个字段你总要会经常用来做搜索,那么,请为其建立索引吧。
从上图你可以看到那个搜索字串 “last_name LIKE ‘a%’”,一个是建了索引,一个是没有索引,性能差了4倍左右。
另外,你应该也需要知道什么样的搜索是不能使用正常的索引的。例如,当你需要在一篇大的文章中搜索一个词时,如: “WHERE post_content LIKE ‘%apple%’”,索引可能是没有意义的。你可能需要使用MySQL全文索引或是自己做一个索引(比如说:搜索关键词或是Tag什么的)
4.在Join表的时候使用相当类型的例,并将其索引
如果你的应用程序有很多JOIN查询,你应该确认两个表中Join的字段是被建过索引的。这样,MySQL内部会启动为你优化Join的SQL语句的机制。而且,这些被用来Join的字段,应该是相同的类型的。例如:如果你要把DECIMAL字段和一个INT字段Join在一起,MySQL就无法使用它们的索引。对于那些STRING类型,还需要有相同的字符集才行。(两个表的字符集有可能不一样)程序员站
5.千万不要ORDER BY RAND()
想打乱返回的数据行?随机挑一个数据?真不知道谁发明了这种用法,但很多新手很喜欢这样用。但你确不了解这样做有多么可怕的性能问题。
如果你真的想把返回的数据行打乱了,你有N种方法可以达到这个目的。这样使用只让你的数据库的性能呈指数级的下降。这里的问题是:MySQL会不得不去执行RAND()函数(很耗CPU时间),而且这是为了每一行记录去记行,然后再对其排序。就算是你用了Limit 1也无济于事(因为要排序)
下面的示例是随机挑一条记录
6.避免 SELECT *
从数据库里读出越多的数据,那么查询就会变得越慢。并且,如果你的数据库服务器和WEB服务器是两台独立的服务器的话,这还会增加网络传输的负载。所以,你应该养成一个需要什么就取什么的好的习惯。
7.永远为每张表设置一个ID
我们应该为数据库里的每张表都设置一个ID做为其主键,而且最好的是一个INT型的(推荐使用UNSIGNED),并设置上自动增加的AUTO_INCREMENT标志。就算是你users表有一个主键叫“email”的字段,你也别让它成为主键。使用VARCHAR类型来当主键会使用得性能下降。另外,在你的程序中,你应该使用表的ID来构造你的数据结构。而且,在MySQL数据引擎下,还有一些操作需要使用主键,在这些情况下,主键的性能和设置变得非常重要,比如,集群,分区……在这里,只有一个情况是例外,那就是“关联表”的“外键”,也就是说,这个表的主键,通过若干个别的表的主键构成。我们把这个情况叫做“外键”。比如:有一个“学生表”有学生的ID,有一个“课程表”有课程ID,那么,“成绩表”就是“关联表”了,其关联了学生表和课程表,在成绩表中,学生ID和课程ID叫“外键”其共同组成主键。wwwphperzcom
8.使用ENUM而不是VARCHAR
ENUM类型是非常快和紧凑的。在实际上,其保存的是TINYINT,但其外表上显示为字符串。这样一来,用这个字段来做一些选项列表变得相当的完美。如果你有一个字段,比如“性别”,“国家”,“民族”,“状态”或“部门”,你知道这些字段的取值是有限而且固定的,那么,你应该使用ENUM而不是VARCHAR。
MySQL也有一个“建议”(见第十条)告诉你怎么去重新组织你的表结构。当你有一个VARCHAR字段时,这个建议会告诉你把其改成ENUM类型。使用PROCEDURE ANALYSE() 你可以得到相关的建议。
9.从PROCEDURE ANALYSE()取得建议
PROCEDURE ANALYSE() 会让MySQL帮你去分析你的字段和其实际的数据,并会给你一些有用的建议。只有表中有实际的数据,这些建议才会变得有用,因为要做一些大的决定是需要有数据作为基础的。
例如,如果你创建了一个INT字段作为你的主键,然而并没有太多的数据,那么,PROCEDURE ANALYSE()会建议你把这个字段的类型改成MEDIUMINT。或是你使用了一个VARCHAR字段,因为数据不多,你可能会得到一个让你把它改成ENUM的建议。这些建议,都是可能因为数据不够多,所以决策做得就不够准。
在phpmyadmin里,你可以在查看表时,点击“Propose table structure”来查看这些建议
一定要注意,这些只是建议,只有当你的表里的数据越来越多时,这些建议才会变得准确。一定要记住,你才是最终做决定的人。
10.尽可能的使用NOT NULL
除非你有一个很特别的原因去使用NULL值,你应该总是让你的字段保持NOT NULL。这看起来好像有点争议,请往下看。
首先,问问你自己“Empty”和“NULL”有多大的区别(如果是INT,那就是0和NULL)?如果你觉得它们之间没有什么区别,那么你就不要使用NULL。(你知道吗?在Oracle里,NULL 和 Empty的字符串是一样的!)
不要以为 NULL 不需要空间,其需要额外的空间,并且,在你进行比较的时候,你的程序会更复杂。当然,这里并不是说你就不能使用NULL了,现实情况是很复杂的,依然会有些情况下,你需要使用NULL值。
下面摘自MySQL自己的文档:
11. Prepared Statements
Prepared Statements很像存储过程,是一种运行在后台的SQL语句集合,我们可以从使用prepared statements获得很多好处,无论是性能问题还是安全问题。Prepared Statements可以检查一些你绑定好的变量,这样可以保护你的程序不会受到“SQL注入式”攻击。当然,你也可以手动地检查你的这些变量,然而,手动的检查容易出问题,而且很经常会被程序员忘了。当我们使用一些framework或是ORM的时候,这样的问题会好一些。在性能方面,当一个相同的查询被使用多次的时候,这会为你带来可观的性能优势。你可以给这些Prepared Statements定义一些参数,而MySQL只会解析一次。
虽然最新版本的MySQL在传输Prepared Statements是使用二进制形势,所以这会使得网络传输非常有效率。
当然,也有一些情况下,我们需要避免使用Prepared Statements,因为其不支持查询缓存。但据说版本5.1后支持了。 php程序员之家
在PHP中要使用prepared statements,你可以查看其使用手册:mysqli扩展或是使用数据库抽象层,如:PDO.
12.无缓冲的查询
正常的情况下,当你在当你在你的脚本中执行一个SQL语句的时候,你的程序会停在那里直到没这个SQL语句返回,然后你的程序再往下继续执行。你可以使用无缓冲查询来改变这个行为。 wwphperzcom
关于这个事情,在PHP的文档中有一个非常不错的说明:mysql_unbuffered_query()函数:
上面那句话翻译过来是说,mysql_unbuffered_query()发送一个SQL语句到MySQL而并不像mysql_query()一样去自动fethch和缓存结果。这会相当节约很多可观的内存,尤其是那些会产生大量结果的查询语句,并且,你不需要等到所有的结果都返回,只需要第一行数据返回的时候,你就可以开始马上开始工作于查询结果了。
然而,这会有一些限制。因为你要么把所有行都读走,或是你要在进行下一次的查询前调用 mysql_free_result() 清除结果。而且, mysql_num_rows() 或 mysql_data_seek() 将无法使用。所以,是否使用无缓冲的查询你需要仔细考虑。
13.把IP地址存成UNSIGNED INT
很多程序员都会创建一个VARCHAR(15) 字段来存放字符串形式的IP而不是整形的IP。如果你用整形来存放,只需要4个字节,并且你可以有定长的字段。而且,这会为你带来查询上的优势,尤其是当你需要使用这样的WHERE条件:IP between ip1 and ip2。
我们必需要使用UNSIGNED INT,因为IP地址会使用整个32位的无符号整形。
而你的查询,你可以使用 INET_ATON()来把一个字符串IP转成一个整形,并使用INET_NTOA()把一个整形转成一个字符串IP。在PHP中,也有这样的函数 ip2long()和long2ip()。
perz.com
14.固定长度的表会更快
如果表中的所有字段都是“固定长度”的,整个表会被认为是 “static” 或 “fixed-length”。 例如,表中没有如下类型的字段: VARCHAR,TEXT,BLOB。只要你包括了其中一个这些字段,那么这个表就不是“固定长度静态表”了,这样,MySQL 引擎会用另一种方法来处理。固定长度的表会提高性能,因为MySQL搜寻得会更快一些,因为这些固定的长度是很容易计算下一个数据的偏移量的,所以读取的自然也会很快。而如果字段不是定长的,那么,每一次要找下一条的话,需要程序找到主键。并且,固定长度的表也更容易被缓存和重建。不过,唯一的副作用是,固定长度的字段会浪费一些空间,因为定长的字段无论你用不用,他都是要分配那么多的空间。使用“垂直分割”技术(见下一条),你可以分割你的表成为两个一个是定长的,一个则是不定长的。
15.垂直分割
“垂直分割”是一种把数据库中的表按列变成几张表的方法,这样可以降低表的复杂度和字段的数目,从而达到优化的目的。(以前,在银行做过项目,见过一张表有100多个字段,很恐怖)
示例一:在Users表中有一个字段是家庭地址,这个字段是可选字段,相比起,而且你在数据库操作的时候除了个人信息外,你并不需要经常读取或是改写这个字段。那么,为什么不把他放到另外一张表中呢?这样会让你的表有更好的性能,大家想想是不是,大量的时候,我对于用户表来说,只有用户ID,用户名,口令,用户角色等会被经常使用。小一点的表总是会有好的性能。
示例二:你有一个叫“last_login”的字段,它会在每次用户登录时被更新。但是,每次更新时会导致该表的查询缓存被清空。所以,你可以把这个字段放到另一个表中,这样就不会影响你对用户ID,用户名,用户角色的不停地读取了,因为查询缓存会帮你增加很多性能。hp程序员之家
另外,你需要注意的是,这些被分出去的字段所形成的表,你不会经常性地去Join他们,不然的话,这样的性能会比不分割时还要差,而且,会是极数级的下降。php程
16.拆分大的DELETE或INSERT语句
如果你需要在一个在线的网站上去执行一个大的DELETE或INSERT查询,你需要非常小心,要避免你的操作让你的整个网站停止相应。因为这两个操作是会锁表的,表一锁住了,别的操作都进不来了。Apache会有很多的子进程或线程。所以,其工作起来相当有效率,而我们的服务器也希望有太多的子进程,线程和数据库链接,这是极大的占服务器资源的事情,尤其是内存。如果你把你的表锁上一段时间,比如30秒钟,那么对于一个有很高访问量的站点来说,这30秒所积累的访问进程/线程,数据库链接,打开的文件数,可能不仅仅会让你泊WEB服务Crash,还可能会让你的整台服务器马上掛了。所以,如果你有一个大的处理,你定你一定把其拆分,使用LIMIT条件是一个好的方法。下面是一个示例:
17.越小的列会越快
对于大多数的数据库引擎来说,硬盘操作可能是最重大的瓶颈。所以,把你的数据变得紧凑会对这种情况非常有帮助,因为这减少了对硬盘的访问。参看MySQL的文档Storage Requirements查看所有的数据类型。p程序员站
如果一个表只会有几列罢了(比如说字典表,配置表),那么,我们就没有理由使用INT来做主键,使用MEDIUMINT,SMALLINT或是更小的TINYINT会更经济一些。如果你不需要记录时间,使用DATE要比DATETIME好得多。
当然,你也需要留够足够的扩展空间,不然,你日后来干这个事,你会死的很难看,参看Slashdot的例子(2009年11月06日),一个简单的ALTER TABLE语句花了3个多小时,因为里面有一千六百万条数据。
18.选择正确的存储引擎
在MySQL中有两个存储引擎MyISAM和InnoDB,每个引擎都有利有弊。酷壳以前文章《MySQL: InnoDB 还是 MyISAM?》讨论和这个事情MyISAM适合于一些需要大量查询的应用,但其对于有大量写操作并不是很好。甚至你只是需要update一个字段,整个表都会被锁起来,而别的进程,就算是读进程都无法操作直到读操作完成。另外,MyISAM对于 SELECT COUNT(*) 这类的计算是超快无比的。 wwwphperzcom
InnoDB的趋势会是一个非常复杂的存储引擎,对于一些小的应用,它会比 MyISAM还慢。他是它支持“行锁” ,于是在写操作比较多的时候,会更优秀。并且,他还支持更多的高级应用,比如:事务。
下面是MySQL的手册
- target=”_blank”MyISAM Storage Engine
- InnoDB Storage Engine
19.使用一个对象关系映射器(Object Relational Mapper)
使用 ORM (Object Relational Mapper),你能够获得可靠的性能增涨。一个ORM可以做的所有事情,也能被手动的编写出来。但是,这需要一个高级专家。phperz~com
ORM的最重要的是“Lazy Loading”,也就是说,只有在需要的去取值的时候才会去真正的去做。但你也需要小心这种机制的副作用,因为这很有可能会因为要去创建很多很多小的查询反而会降低性能。hperz.com
ORM还可以把你的SQL语句打包成一个事务,这会比单独执行他们快得多得多。
目前,个人最喜欢的PHP的ORM是:Doctrine。
20.小心“永久链接”
“永久链接”的目的是用来减少重新创建MySQL链接的次数。当一个链接被创建了,它会永远处在连接的状态,就算是数据库操作已经结束了。而且,自从我们的Apache开始重用它的子进程后——也就是说,下一次的HTTP请求会重用Apache的子进程,并重用相同的MySQL链接。
PHP手册:mysql_pconnect()
在理论上来说,这听起来非常的不错。但是从个人经验(也是大多数人的)上来说,这个功能制造出来的麻烦事更多。因为,你只有有限的链接数,内存问题,文件句柄数,等等。
而且,Apache运行在极端并行的环境中,会创建很多很多的了进程。这就是为什么这种“永久链接”的机制工作地不好的原因。在你决定要使用“永久链接”之前,你需要好好地考虑一下你的整个系统的架构。
my.cnf参数配置:终极大法
二、连接数
经 常会遇见”mysql: error 1040: too many connections”的情况,一种是访问量确实很高,mysql服务器抗不住,这个时候就要考虑增加从服务器分散读压力,另外一种情况是mysql配 置文件中max_connections值过小:
mysql> show variables like 'max_connections';
+—————–+——-+
| variable_name | value |
+—————–+——-+
| max_connections | 256 |
+—————–+——-+
这台mysql服务器最大连接数是256,然后查询一下服务器响应的最大连接数:
mysql> show global status like 'max_used_connections';
mysql服务器过去的最大连接数是245,没有达到服务器连接数上限256,应该没有出现1040错误,比较理想的设置是
max_used_connections / max_connections * 100% ≈ 85%
最大连接数占上限连接数的85%左右,如果发现比例在10%以下,mysql服务器连接数上限设置的过高了。
三、key_buffer_size
key_buffer_size是对myisam表性能影响最大的一个参数,下面一台以myisam为主要存储引擎服务器的配置:
mysql> show variables like 'key_buffer_size';
+—————–+————+
| variable_name | value |
+—————–+————+
| key_buffer_size | 536870912 |
+—————–+————+
分配了512mb内存给key_buffer_size,我们再看一下key_buffer_size的使用情况:
mysql> show global status like 'key_read%';
+————————+————-+
| variable_name | value |
+————————+————-+
| key_read_requests | 27813678764 |
| key_reads | 6798830 |
+————————+————-+
一共有27813678764个索引读取请求,有6798830个请求在内存中没有找到直接从硬盘读取索引,计算索引未命中缓存的概率:
key_cache_miss_rate = key_reads / key_read_requests * 100%
比 如上面的数据,key_cache_miss_rate为0.0244%,4000个索引读取请求才有一个直接读硬盘,已经很bt 了,key_cache_miss_rate在0.1%以下都很好(每1000个请求有一个直接读硬盘),如果key_cache_miss_rate在 0.01%以下的话,key_buffer_size分配的过多,可以适当减少。
mysql服务器还提供了key_blocks_*参数:
mysql> show global status like 'key_blocks_u%';
+————————+————-+
| variable_name | value |
+————————+————-+
| key_blocks_unused | 0 |
| key_blocks_used | 413543 |
+————————+————-+
key_blocks_unused 表示未使用的缓存簇(blocks)数,key_blocks_used表示曾经用到的最大的blocks数,比如这台服务器,所有的缓存都用到了,要么 增加key_buffer_size,要么就是过渡索引了,把缓存占满了。比较理想的设置:
key_blocks_used / (key_blocks_unused + key_blocks_used) * 100% ≈ 80%
四、临时表
mysql> show global status like 'created_tmp%';
+————————-+———+
| variable_name | value |
+————————-+———+
| created_tmp_disk_tables | 21197 |
| created_tmp_files | 58 |
| created_tmp_tables | 1771587 |
+————————-+———+
每次创建临时表,created_tmp_tables增加,如果是在磁盘上创建临时表,created_tmp_disk_tables也增加,created_tmp_files表示mysql服务创建的临时文件文件数,比较理想的配置是:
created_tmp_disk_tables / created_tmp_tables * 100% <= 25%比如上面的服务器created_tmp_disk_tables / created_tmp_tables * 100% = 1.20%,应该相当好了。我们再看一下mysql服务器对临时表的配置:
mysql> show variables where variable_name in ('tmp_table_size', 'max_heap_table_size');
+———————+———–+
| variable_name | value |
+———————+———–+
| max_heap_table_size | 268435456 |
| tmp_table_size | 536870912 |
+———————+———–+
只有256mb以下的临时表才能全部放内存,超过的就会用到硬盘临时表。
五、open table情况
mysql> show global status like 'open%tables%';
+—————+——-+
| variable_name | value |
+—————+——-+
| open_tables | 919 |
| opened_tables | 1951 |
+—————+——-+
open_tables 表示打开表的数量,opened_tables表示打开过的表数量,如果opened_tables数量过大,说明配置中 table_cache(5.1.3之后这个值叫做table_open_cache)值可能太小,我们查询一下服务器table_cache值:
mysql> show variables like 'table_cache';
+—————+——-+
| variable_name | value |
+—————+——-+
| table_cache | 2048 |
+—————+——-+
比较合适的值为:
open_tables / opened_tables * 100% >= 85%
open_tables / table_cache * 100% <= 95%
六、进程使用情况
mysql> show global status like 'thread%';
+——————-+——-+
| variable_name | value |
+——————-+——-+
| threads_cached | 46 |
| threads_connected | 2 |
| threads_created | 570 |
| threads_running | 1 |
+——————-+——-+
如 果我们在mysql服务器配置文件中设置了thread_cache_size,当客户端断开之后,服务器处理此客户的线程将会缓存起来以响应下一个客户 而不是销毁(前提是缓存数未达上限)。threads_created表示创建过的线程数,如果发现threads_created值过大的话,表明 mysql服务器一直在创建线程,这也是比较耗资源,可以适当增加配置文件中thread_cache_size值,查询服务器 thread_cache_size配置:
mysql> show variables like 'thread_cache_size';
+——————-+——-+
| variable_name | value |
+——————-+——-+
| thread_cache_size | 64 |
+——————-+——-+
示例中的服务器还是挺健康的。
七、查询缓存(query cache)
mysql> show global status like 'qcache%';
+————————-+———–+
| variable_name | value |
+————————-+———–+
| qcache_free_blocks | 22756 |
| qcache_free_memory | 76764704 |
| qcache_hits | 213028692 |
| qcache_inserts | 208894227 |
| qcache_lowmem_prunes | 4010916 |
| qcache_not_cached | 13385031 |
| qcache_queries_in_cache | 43560 |
| qcache_total_blocks | 111212 |
+————————-+———–+
mysql查询缓存变量解释:
qcache_free_blocks:缓存中相邻内存块的个数。数目大说明可能有碎片。flush query cache会对缓存中的碎片进行整理,从而得到一个空闲块。
qcache_free_memory:缓存中的空闲内存。
qcache_hits:每次查询在缓存中命中时就增大
qcache_inserts:每次插入一个查询时就增大。命中次数除以插入次数就是不中比率。
qcache_lowmem_prunes: 缓存出现内存不足并且必须要进行清理以便为更多查询提供空间的次数。这个数字最好长时间来看;如果这个数字在不断增长,就表示可能碎片非常严重,或者内存 很少。(上面的 free_blocks和free_memory可以告诉您属于哪种情况)
qcache_not_cached:不适合进行缓存的查询的数量,通常是由于这些查询不是 select 语句或者用了now()之类的函数。
qcache_queries_in_cache:当前缓存的查询(和响应)的数量。
qcache_total_blocks:缓存中块的数量。
我们再查询一下服务器关于query_cache的配置:
mysql> show variables like 'query_cache%';
+——————————+———–+
| variable_name | value |
+——————————+———–+
| query_cache_limit | 2097152 |
| query_cache_min_res_unit | 4096 |
| query_cache_size | 203423744 |
| query_cache_type | on |
| query_cache_wlock_invalidate | off |
+——————————+———–+
各字段的解释:
query_cache_limit:超过此大小的查询将不缓存
query_cache_min_res_unit:缓存块的最小大小
query_cache_size:查询缓存大小
query_cache_type:缓存类型,决定缓存什么样的查询,示例中表示不缓存 select sql_no_cache 查询
query_cache_wlock_invalidate:当有其他客户端正在对myisam表进行写操作时,如果查询在query cache中,是否返回cache结果还是等写操作完成再读表获取结果。
query_cache_min_res_unit的配置是一柄”双刃剑”,默认是4kb,设置值大对大数据查询有好处,但如果你的查询都是小数据查询,就容易造成内存碎片和浪费。
查询缓存碎片率 = qcache_free_blocks / qcache_total_blocks * 100%
如果查询缓存碎片率超过20%,可以用flush query cache整理缓存碎片,或者试试减小query_cache_min_res_unit,如果你的查询都是小数据量的话。
查询缓存利用率 = (query_cache_size – qcache_free_memory) / query_cache_size * 100%
查询缓存利用率在25%以下的话说明query_cache_size设置的过大,可适当减小;查询缓存利用率在80%以上而且qcache_lowmem_prunes > 50的话说明query_cache_size可能有点小,要不就是碎片太多。
查询缓存命中率 = (qcache_hits – qcache_inserts) / qcache_hits * 100%
示例服务器 查询缓存碎片率 = 20.46%,查询缓存利用率 = 62.26%,查询缓存命中率 = 1.94%,命中率很差,可能写操作比较频繁吧,而且可能有些碎片。
八、排序使用情况
mysql> show global status like 'sort%';
+——————-+————+
| variable_name | value |
+——————-+————+
| sort_merge_passes | 29 |
| sort_range | 37432840 |
| sort_rows | 9178691532 |
| sort_scan | 1860569 |
+——————-+————+
sort_merge_passes 包括两步。mysql 首先会尝试在内存中做排序,使用的内存大小由系统变量 sort_buffer_size 决定,如果它的大小不够把所有的记录都读到内存中,mysql 就会把每次在内存中排序的结果存到临时文件中,等 mysql 找到所有记录之后,再把临时文件中的记录做一次排序。这再次排序就会增加 sort_merge_passes。实际上,mysql 会用另一个临时文件来存再次排序的结果,所以通常会看到 sort_merge_passes 增加的数值是建临时文件数的两倍。因为用到了临时文件,所以速度可能会比较慢,增加 sort_buffer_size 会减少 sort_merge_passes 和 创建临时文件的次数。但盲目的增加 sort_buffer_size 并不一定能提高速度,见 how fast can you sort data with mysql?(引自http://qroom.blogspot.com/2007/09/mysql-select-sort.html,貌似被墙)
另外,增加read_rnd_buffer_size(3.2.3是record_rnd_buffer_size)的值对排序的操作也有一点的好处,参见:http://www.mysqlperformanceblog.com/2007/07/24/what-exactly-is-read_rnd_buffer_size/
九、文件打开数(open_files)
mysql> show global status like 'open_files';
+—————+——-+
| variable_name | value |
+—————+——-+
| open_files | 1410 |
+—————+——-+mysql> show variables like 'open_files_limit';
+——————+——-+
| variable_name | value |
+——————+——-+
| open_files_limit | 4590 |
+——————+——-+
比较合适的设置:open_files / open_files_limit * 100% <= 75%
十、表锁情况
mysql> show global status like 'table_locks%';
+———————–+———–+
| variable_name | value |
+———————–+———–+
| table_locks_immediate | 490206328 |
| table_locks_waited | 2084912 |
+———————–+———–+
table_locks_immediate表示立即释放表锁数,table_locks_waited表示需要等待的表锁数,如果 table_locks_immediate / table_locks_waited > 5000,最好采用innodb引擎,因为innodb是行锁而myisam是表锁,对于高并发写入的应用innodb效果会好些。示例中的服务器 table_locks_immediate / table_locks_waited = 235,myisam就足够了。
十一、表扫描情况
mysql> show global status like 'handler_read%';
+———————–+————-+
| variable_name | value |
+———————–+————-+
| handler_read_first | 5803750 |
| handler_read_key | 6049319850 |
| handler_read_next | 94440908210 |
| handler_read_prev | 34822001724 |
| handler_read_rnd | 405482605 |
| handler_read_rnd_next | 18912877839 |
+———————–+————-+
各字段解释参见http://hi.baidu.com/thinkinginlamp/blog/item/31690cd7c4bc5cdaa144df9c.html,调出服务器完成的查询请求次数:
mysql> show global status like 'com_select';
+—————+———–+
| variable_name | value |
+—————+———–+
| com_select | 222693559 |
+—————+———–+
计算表扫描率:
表扫描率 = handler_read_rnd_next / com_select
如果表扫描率超过4000,说明进行了太多表扫描,很有可能索引没有建好,增加read_buffer_size值会有一些好处,但最好不要超过8mb。
后记:
文中提到一些数字都是参考值,了解基本原理就可以,除了mysql提供的各种status值外,操作系统的一些性能指标也很重要,比如常用的top,iostat等,尤其是iostat,现在的系统瓶颈一般都在磁盘io上,关于iostat的使用,可以参考:http://www.php-oa.com/2009/02/03/iostat.html