使用spark访问elasticsearch的数据,前提是spark能访问hive,hive能访问es
1.配置
cp elasticsearch-hadoop-2.1.1/dist/elasticsearch-hadoop-2.1.1.jar /usr/local/spark-1.5.2/lib/
2.修改配置文件/usr/local/spark/conf/hive-site.xml,添加
<property>
<name>hive.aux.jars.path</name>
<value>file:///usr/local/spark-1.5.2/lib/elasticsearch-hadoop-2.1.1.jar</value>
<description>A comma separated list (with no spaces) of the jar files</description>
</property>
3.配置/usr/local/hive-1.2.1/lib/MySQL-connector-java-5.1.31-bin.jar,在spark-env.sh添加
export SPARK_CLASSPATH=$SPARK_CLASSPATH:/usr/local/hive-1.2.1/lib/mysql-connector-java-5.1.31-bin.jar
4.启动
sbin/start-thriftserver.sh –hiveconf hive.server2.thrift.port=10000 –hiveconf hive.server2.thrift.bind.host=hadoop-master –master spark://10.8.2.100:7077 –jars /usr/local/spark-1.5.2/lib/elasticsearch-hadoop-2.1.1.jar
或者
bin/spark-sql –master spark://10.8.2.100:7077 –jars /usr/local/spark-1.5.2/lib/elasticsearch-hadoop-2.1.1.jar
5.测试
beeline -u jdbc:hive2://10.8.2.100:10000 (稍等一下执行此命令,报错有可能是服务还没起来)
select count(dtime) from achi_ex limit 10;
注意:–driver-class-path和–jars的区别,使用sbin/start-thriftserver.sh -h查看
如果1中拷贝到所有slave中spark/lib中,后面不用—jars指定jar包
这种方式比直接访问hive中的数据慢一倍左右