接上一篇:Kafka消息序列化和反序列化(上)。
有序列化就会有反序列化,反序列化的操作是在Kafka Consumer中完成的,使用起来只需要配置一下key.deserializer和value.deseriaizer。对应上面自定义的Company类型的Deserializer就需要实现org.apache.kafka.common.serialization.Deserializer接口,这个接口同样有三个方法:
- public void configure(Map<String, ?> configs, boolean isKey):用来配置当前类。
- public byte[] serialize(String topic, T data):用来执行反序列化。如果data为null建议处理的时候直接返回null而不是抛出一个异常。
- public void close():用来关闭当前序列化器。
下面就来看一下DemoSerializer对应的反序列化的DemoDeserializer,详细代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 1public class DemoDeserializer implements Deserializer<Company> {
2 public void configure(Map<String, ?> configs, boolean isKey) {}
3 public Company deserialize(String topic, byte[] data) {
4 if (data == null) {
5 return null;
6 }
7 if (data.length < 8) {
8 throw new SerializationException("Size of data received by DemoDeserializer is shorter than expected!");
9 }
10 ByteBuffer buffer = ByteBuffer.wrap(data);
11 int nameLen, addressLen;
12 String name, address;
13 nameLen = buffer.getInt();
14 byte[] nameBytes = new byte[nameLen];
15 buffer.get(nameBytes);
16 addressLen = buffer.getInt();
17 byte[] addressBytes = new byte[addressLen];
18 buffer.get(addressLen);
19 try {
20 name = new String(nameBytes, "UTF-8");
21 address = new String(addressBytes, "UTF-8");
22 } catch (UnsupportedEncodingException e) {
23 throw new SerializationException("Error occur when deserializing!");
24 }
25 return new Company(name,address);
26 }
27 public void close() {}
28}
29
有些读者可能对新版的Consumer不是很熟悉,这里顺带着举一个完整的消费示例,并以DemoDeserializer作为消息Value的反序列化器。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 1Properties properties = new Properties();
2properties.put("bootstrap.servers", brokerList);
3properties.put("group.id", consumerGroup);
4properties.put("session.timeout.ms", 10000);
5properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
6properties.put("value.deserializer", "com.hidden.client.DemoDeserializer");
7properties.put("client.id", "hidden-consumer-client-id-zzh-2");
8KafkaConsumer<String, Company> consumer = new KafkaConsumer<String, Company>(properties);
9consumer.subscribe(Arrays.asList(topic));
10try {
11 while (true) {
12 ConsumerRecords<String, Company> records = consumer.poll(100);
13 for (ConsumerRecord<String, Company> record : records) {
14 String info = String.format("topic=%s, partition=%s, offset=%d, consumer=%s, country=%s",
15 record.topic(), record.partition(), record.offset(), record.key(), record.value());
16 System.out.println(info);
17 }
18 consumer.commitAsync(new OffsetCommitCallback() {
19 public void onComplete(Map<TopicPartition, OffsetAndMetadata> offsets, Exception exception) {
20 if (exception != null) {
21 String error = String.format("Commit failed for offsets {}", offsets, exception);
22 System.out.println(error);
23 }
24 }
25 });
26 }
27} finally {
28 consumer.close();
29}
30
有些时候自定义的类型还可以和Avro、ProtoBuf等联合使用,而且这样更加的方便快捷,比如我们将前面Company的Serializer和Deserializer用Protostuff包装一下,由于篇幅限制,笔者这里只罗列出对应的serialize和deserialize方法,详细参考如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 1public byte[] serialize(String topic, Company data) {
2 if (data == null) {
3 return null;
4 }
5 Schema schema = (Schema) RuntimeSchema.getSchema(data.getClass());
6 LinkedBuffer buffer = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE);
7 byte[] protostuff = null;
8 try {
9 protostuff = ProtostuffIOUtil.toByteArray(data, schema, buffer);
10 } catch (Exception e) {
11 throw new IllegalStateException(e.getMessage(), e);
12 } finally {
13 buffer.clear();
14 }
15 return protostuff;
16}
17
18public Company deserialize(String topic, byte[] data) {
19 if (data == null) {
20 return null;
21 }
22 Schema schema = RuntimeSchema.getSchema(Company.class);
23 Company ans = new Company();
24 ProtostuffIOUtil.mergeFrom(data, ans, schema);
25 return ans;
26}
27
如果Company的字段很多,我们使用Protostuff进一步封装一下的方式就显得简洁很多。不过这个不是最主要的,而最主要的是经过Protostuff包装之后,这个Serializer和Deserializer可以向前兼容(新加字段采用默认值)和向后兼容(忽略新加字段),这个特性Avro和Protobuf也都具备。
自定义的类型有一个不得不面对的问题就是Kafka Producer和Kafka Consumer之间的序列化和反序列化的兼容性,试想对于StringSerializer来说,Kafka Consumer可以顺其自然的采用StringDeserializer,不过对于Company这种专用类型,某个服务使用DemoSerializer进行了序列化之后,那么下游的消费者服务必须也要实现对应的DemoDeserializer。再者,如果上游的Company类型改变,下游也需要跟着重新实现一个新的DemoSerializer,这个后面所面临的难题可想而知。所以,如无特殊需要,笔者不建议使用自定义的序列化和反序列化器;如有业务需要,也要使用通用的Avro、Protobuf、Protostuff等序列化工具包装,尽可能的实现得更加通用且向前后兼容。
题外话,对于Kafka的“深耕者”Confluent来说,还有其自身的一套序列化和反序列化解决方案(io.confluent.kafka.serializer.KafkaAvroSerializer),GitHub上有相关资料,读者如有兴趣可以自行扩展学习。