Java 8中HashMap的性能提升

释放双眼,带上耳机,听听看~!

HashMap是一个高效通用的数据结构,它在每一个Java程序中都随处可见。先来介绍些基础知识。你可能也知道,HashMap使用key的hashCode()和equals()方法来将值划分到不同的桶里。桶的数量通常要比map中的记录的数量要稍大,这样每个桶包括的值会比较少(最好是一个)。当通过key进行查找时,我们可以在常数时间内迅速定位到某个桶(使用hashCode()对桶的数量进行取模)以及要找的对象。

这些东西你应该都已经知道了。你可能还知道哈希碰撞会对hashMap的性能带来灾难性的影响。如果多个hashCode()的值落到同一个桶内的时候,这些值是存储到一个链表中的。最坏的情况下,所有的key都映射到同一个桶中,这样hashmap就退化成了一个链表——查找时间从O(1)到O(n)。我们先来测试下正常情况下hashmap在Java 7和Java 8中的表现。为了能完成控制hashCode()方法的行为,我们定义了如下的一个Key类:


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
1class Key implements Comparable<Key> {
2private final int value;
3Key(int value) {
4this.value = value;
5}
6@Override
7public int compareTo(Key o) {
8return Integer.compare(this.value, o.value);
9}
10@Override
11public boolean equals(Object o) {
12if (this == o) return true;
13if (o == null || getClass() != o.getClass())
14return false;
15Key key = (Key) o;
16return value == key.value;
17}
18@Override
19public int hashCode() {
20return value;
21}
22}
23

Key类的实现中规中矩:它重写了equals()方法并且提供了一个还算过得去的hashCode()方法。为了避免过度的GC,我将不可变的Key对象缓存了起来,而不是每次都重新开始创建一遍:


1
2
3
4
5
6
7
8
9
10
11
12
13
14
1class Key implements Comparable<Key> {
2public class Keys {
3public static final int MAX_KEY = 10_000_000;
4private static final Key[] KEYS_CACHE = new Key[MAX_KEY];
5static {
6for (int i = 0; i < MAX_KEY; ++i) {
7KEYS_CACHE[i] = new Key(i);
8}
9}
10public static Key of(int value) {
11return KEYS_CACHE[value];
12}
13}
14

现在我们可以开始进行测试了。我们的基准测试使用连续的Key值来创建了不同的大小的HashMap(10的乘方,从1到1百万)。在测试中我们还会使用key来进行查找,并测量不同大小的HashMap所花费的时间:


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
1import com.google.caliper.Param;
2import com.google.caliper.Runner;
3import com.google.caliper.SimpleBenchmark;
4public class MapBenchmark extends SimpleBenchmark {
5private HashMap<Key, Integer> map;
6@Param
7private int mapSize;
8@Override
9protected void setUp() throws Exception {
10map = new HashMap<>(mapSize);
11for (int i = 0; i < mapSize; ++i) {
12map.put(Keys.of(i), i);
13}
14}
15public void timeMapGet(int reps) {
16for (int i = 0; i < reps; i++) {
17map.get(Keys.of(i % mapSize));
18}
19}
20}
21

Java 8中HashMap的性能提升

有意思的是这个简单的HashMap.get()里面,Java 8比Java 7要快20%。整体的性能也相当不错:尽管HashMap里有一百万条记录,单个查询也只花了不到10纳秒,也就是大概我机器上的大概20个CPU周期。相当令人震撼!不过这并不是我们想要测量的目标。

假设有一个很差劲的key,他总是返回同一个值。这是最糟糕的场景了,这种情况完全就不应该使用HashMap:


1
2
3
4
5
6
7
8
1class Key implements Comparable<Key> {
2//...
3@Override
4public int hashCode() {
5return 0;
6}
7}
8

Java 8中HashMap的性能提升

Java 7的结果是预料中的。随着HashMap的大小的增长,get()方法的开销也越来越大。由于所有的记录都在同一个桶里的超长链表内,平均查询一条记录就需要遍历一半的列表。因此从图上可以看到,它的时间复杂度是O(n)。

不过Java 8的表现要好许多!它是一个log的曲线,因此它的性能要好上好几个数量级。尽管有严重的哈希碰撞,已是最坏的情况了,但这个同样的基准测试在JDK8中的时间复杂度是O(logn)。单独来看JDK 8的曲线的话会更清楚,这是一个对数线性分布:

Java 8中HashMap的性能提升

为什么会有这么大的性能提升,尽管这里用的是大O符号(大O描述的是渐近上界)?其实这个优化在JEP-180中已经提到了。如果某个桶中的记录过大的话(当前是TREEIFY_THRESHOLD = 8),HashMap会动态的使用一个专门的treemap实现来替换掉它。这样做的结果会更好,是O(logn),而不是糟糕的O(n)。它是如何工作的?前面产生冲突的那些KEY对应的记录只是简单的追加到一个链表后面,这些记录只能通过遍历来进行查找。但是超过这个阈值后HashMap开始将列表升级成一个二叉树,使用哈希值作为树的分支变量,如果两个哈希值不等,但指向同一个桶的话,较大的那个会插入到右子树里。如果哈希值相等,HashMap希望key值最好是实现了Comparable接口的,这样它可以按照顺序来进行插入。这对HashMap的key来说并不是必须的,不过如果实现了当然最好。如果没有实现这个接口,在出现严重的哈希碰撞的时候,你就并别指望能获得性能提升了。

这个性能提升有什么用处?比方说恶意的程序,如果它知道我们用的是哈希算法,它可能会发送大量的请求,导致产生严重的哈希碰撞。然后不停的访问这些key就能显著的影响服务器的性能,这样就形成了一次拒绝服务攻击(DoS)。JDK 8中从O(n)到O(logn)的飞跃,可以有效地防止类似的攻击,同时也让HashMap性能的可预测性稍微增强了一些。我希望这个提升能最终说服你的老大同意升级到JDK 8来。

测试使用的环境是:Intel Core i7-3635QM @ 2.4 GHz,8GB内存,SSD硬盘,使用默认的JVM参数,运行在64位的Windows 8.1系统 上。

给TA打赏
共{{data.count}}人
人已打赏
安全技术

用node.js从零开始去写一个简单的爬虫

2021-12-21 16:36:11

安全技术

从零搭建自己的SpringBoot后台框架(二十三)

2022-1-12 12:36:11

个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索