如何构建一个分布式爬虫:实战篇

释放双眼,带上耳机,听听看~!

本篇文章将是『如何构建一个分布式爬虫』系列文章的最后一篇,拟**从实战角度**来介绍如何构建一个*稳健的分布式微博爬虫*。这里我*没敢谈高效*,抓过微博数据的同学应该都知道微博的反爬虫能力,也知道微博数据抓取的瓶颈在哪里。我在知乎上看过一些同学的说法,把微博的数据抓取难度简单化了,我只能说,那是你太naive,没深入了解和长期抓取而已。

本文将会以PC端微博进行讲解,因为移动端微博数据不如PC短全面,而且抓取和解析难度都会小一些。文章比较长,由于篇幅所限,文章并没有列出所有代码,只是讲了大致流程和思路。

要抓微博数据,第一步便是模拟登陆,因为很多信息(比如用户信息,用户主页微博数据翻页等各种翻页)都需要在登录状态下才能查看。关于模拟登陆进阶,我写过两篇文章,一篇是超详细的Python实现新浪微博模拟登陆(小白都能懂),是从小白的角度写的;另外一篇是超详细的Python实现百度云盘模拟登陆(模拟登陆进阶),是从有一定经验的熟手的角度写的。读了这两篇文章,并且根据我写的过程自己动手实现过的同学,应该对于模拟登陆PC端微博是没有太大难度的。那两篇文章没有讲如何处理验证码,这里我简单说一下,做爬虫的同学不要老想着用什么机器学习的方法去识别复杂验证码,真的难度非常大,这应该也不是一个爬虫工程师的工作重点,当然这只是我的个人建议。工程化的项目,我还是建议大家通过*打码平台*来解决验证码的问题。我在 分布式微博爬虫( ResolveWang/WeiboSpider )中就是直接调用打码平台的接口来做的大规模微博账号的模拟登陆,效果还不错,而且打码成本很低。

说完模拟登陆(具体请参见我写的那两篇文章,篇幅所限,我就不copy过来了),我们现在正式进入微博的数据抓取。这里我会以微博用户信息抓取为例来进行分析和讲解。

关于用户信息抓取,可能我们有两个目的。
一个是我们只想抓一些指定用户,另外一个是我们想尽可能多的抓取更多数量的用户的信息。我的目的假定是第二种。那么我们该以什么样的策略来抓取,才能
获得尽可能多的用户信息呢?如果我们初始用户选择有误,选了一些不活跃的用户,很可能会形成一个环,这样就抓不了太多的数据。这里有一个很简单的思路:我们
把一些大V拿来做为种子用户,我们先抓他们的个人信息,然后再抓大V所关注的用户和粉丝,大V关注的用户肯定也是类似大V的用户,这样的话,就不容易形成环了。

策略我们都清楚了。就该是分析和编码了。

我们先来分析如何构造用户信息的URL。这里我以微博名为

1
1`

一起神吐槽

1
1`

的博主为例进行分析。做爬虫的话,一个很重要的意识就是
爬虫能抓的数据都是人能看到的数据,反过来,人能在浏览器上看到的数据,爬虫几乎都能抓。这里用的是

1
1`

几乎

1
1`

,因为有的数据抓取难度特别。我们首先需要
以正常人的流程看看怎么获取到用户的信息。我们先进入该博主的主页,如下图
如何构建一个分布式爬虫:实战篇

点击查看更多,可以查看到该博主的具体信息
如何构建一个分布式爬虫:实战篇

这里我们就看到了他的具体信息了。然后,我们看该页面的url构造

Sina Visitor System

我直接copy的地址栏的url。这样做有啥不好的呢?对于老鸟来说,一下就看出来了,这样做的话,可能会导致信息不全,因为可能有些信息是动态加载的。所以,我们需要通过抓包来判断到底微博会通过该url返回所有信息,还是需要请求一些ajax 链接才会返回一些关键信息。这里我就重复一下我的观点:
抓包很重要,抓包很重要,抓包很重要!重要的事情说三遍。关于抓包,我在超详细的Python实现新浪微博模拟登陆(小白都能懂)和超详细的Python实现百度云盘模拟登陆(模拟登陆进阶)都详细讲过了,这里我就不讲了。

我们抓完包,发现并没有ajax请求。那么可以肯定请求前面的url,会返回所有信息。我们通过点击鼠标右键,查看网页源代码,然后

1
1`

ctrl+a

1
1`

1
1`

ctrl+c

1
1`

将所有的页面源码保存到本地,这里我命名为

1
1`

personinfo.html

1
1`

。我们用浏览器打开该文件,发现我们需要的所有信息都在这段源码中,这个工作和抓包判断数据是否全面有些重复,但是在我看来是必不可少的,因为我们解析页面数据的时候还可以用到这个html文件,如果我们每次都通过网络请求去解析内容的话,那么可能账号没一会儿就会被封了(因为频繁访问微博信息),所以我们需要
把要解析的文件保存到本地。

从上面分析中我们可以得知

http://weibo.com/p/1005051751195602/info?mod=pedit_more

这个url就是获取用户数据的url。那么我们在只知道用户id的时候怎么构造它呢?我们可以多拿几个用户id来做测试,看构造是否有规律,比如我这里以用户名为网易云音乐的用户做分析,发现它的用户信息页面构造如下

Sina Visitor System

这个就和上面那个不同了。但是我们仔细观察,可以发现上面那个是个人用户,下面是企业微博用户。我们尝试一下把它们url格式都统一为第一种或者第二种的格式
http://weibo.com/1751195602/about

这样会出现404,那么统一成上面那种呢?

http://weibo.com/p/1005051721030997/info?mod=pedit_more

这样子的话,它会被重定向到用户主页,而不是用户详细资料页。所以也就不对了。那么该以什么依据判断何时用第一种url格式,何时用第二种url格式呢?我们多翻几个用户,会发现除了

1
1`

100505

1
1`

之外,还有

1
1`

100305

1
1`

1
1`

100206

1
1`

等前缀,那么我猜想这个应该可以区分不同用户。这个前缀在哪里可以得到呢?我们打开我们刚保存的页面源码,搜索

1
1`

100505

1
1`

,可以发现
如何构建一个分布式爬虫:实战篇

微博应该是根据这个来区分不同用户类型的。这里大家可以自己也可以试试,看不同用户的

1
1`

domain

1
1`

是否不同。为了数据能全面,我也是做了大量测试,发现个人用户的domain是

1
1`

1005051

1
1`

,作家是

1
1`

100305

1
1`

,其他基本都是认证的企业号。前两个个人信息的url构造就是

http://weibo.com/p/domain+uid/info?mod=pedit_more

后者的是

http://weibo.com/uid/about

弄清楚了个人信息url的构造方式,但是还有一个问题。我们已知只有uid啊,没有domain啊。如果是企业号,我们通过

1
1`

domain=100505

1
1`

会被重定向到主页,如果是作家等(domain=100305或者100306),也会被重定向主页。我们在主页把domain提取出来,再请求一次,不就能拿到用户详细信息了吗?

关于如何构造获取用户信息的url的相关分析就到这里了。因为我们是在登录的情况下进行数据抓取的,可能在抓取的时候,某个账号突然就被封了,或者由于网络原因,某次请求失败了,该如何处理?对于前者,我们需要判断每次请求返回的内容是否符合预期,也就是看response url是否正常,看response content是否是404或者让你验证手机号等,对于后者,我们可以做一个简单的重试策略。处理这两种情况的代码如下


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
1@timeout_decorator
2def get_page(url, user_verify=True, need_login=True):
3    """
4    :param url: 待抓取url
5    :param user_verify: 是否为可能出现验证码的页面(ajax连接不会出现验证码,如果是请求微博或者用户信息可能出现验证码),否为抓取转发的ajax连接
6    :param need_login: 抓取页面是否需要登录,这样做可以减小一些账号的压力
7    :return: 返回请求的数据,如果出现404或者403,或者是别的异常,都返回空字符串
8    """
9    crawler.info('本次抓取的url为{url}'.format(url=url))
10    count = 0
11
12    while count < max_retries:
13
14        if need_login:
15            # 每次重试的时候都换cookies,并且和上次不同,如果只有一个账号,那么就允许相同
16            name_cookies = Cookies.fetch_cookies()
17            
18            if name_cookies is None:
19                crawler.warning('cookie池中不存在cookie,正在检查是否有可用账号')
20                rs = get_login_info()
21
22                # 选择状态正常的账号进行登录,账号都不可用就停掉celery worker
23                if len(rs) == 0:
24                    crawler.error('账号均不可用,请检查账号健康状况')
25                    # 杀死所有关于celery的进程
26                    if 'win32' in sys.platform:
27                        os.popen('taskkill /F /IM "celery*"')
28                    else:
29                        os.popen('pkill -f "celery"')
30                else:
31                    crawler.info('重新获取cookie中...')
32                    login.excute_login_task()
33                    time.sleep(10)
34
35        try:
36            if need_login:
37                resp = requests.get(url, headers=headers, cookies=name_cookies[1], timeout=time_out, verify=False)
38
39                if "$CONFIG['islogin'] = '0'" in resp.text:
40                    crawler.warning('账号{}出现异常'.format(name_cookies[0]))
41                    freeze_account(name_cookies[0], 0)
42                    Cookies.delete_cookies(name_cookies[0])
43                    continue
44            else:
45                resp = requests.get(url, headers=headers, timeout=time_out, verify=False)
46
47            page = resp.text
48            if page:
49                page = page.encode('utf-8', 'ignore').decode('utf-8')
50            else:
51                continue
52
53            # 每次抓取过后程序sleep的时间,降低封号危险
54            time.sleep(interal)
55
56            if user_verify:
57                if 'unfreeze' in resp.url or 'accessdeny' in resp.url or 'userblock' in resp.url or is_403(page):
58                    crawler.warning('账号{}已经被冻结'.format(name_cookies[0]))
59                    freeze_account(name_cookies[0], 0)
60                    Cookies.delete_cookies(name_cookies[0])
61                    count += 1
62                    continue
63
64                if 'verifybmobile' in resp.url:
65                    crawler.warning('账号{}功能被锁定,需要手机解锁'.format(name_cookies[0]))
66        
67                    freeze_account(name_cookies[0], -1)
68                    Cookies.delete_cookies(name_cookies[0])
69                    continue
70
71                if not is_complete(page):
72                    count += 1
73                    continue
74
75                if is_404(page):
76                    crawler.warning('url为{url}的连接不存在'.format(url=url))
77                    return ''
78
79        except (requests.exceptions.ReadTimeout, requests.exceptions.ConnectionError, AttributeError) as e:
80            crawler.warning('抓取{}出现异常,具体信息是{}'.format(url, e))
81            count += 1
82            time.sleep(excp_interal)
83
84        else:
85            Urls.store_crawl_url(url, 1)
86            return page
87
88    crawler.warning('抓取{}已达到最大重试次数,请在redis的失败队列中查看该url并检查原因'.format(url))
89    Urls.store_crawl_url(url, 0)
90    return ''
91
92

这里大家把上述代码当一段伪代码读就行了,主要看看如何处理抓取时候的异常。因为如果贴整个用户抓取的代码,不是很现实,代码量有点大。

下面讲页面解析的分析。有一些做PC端微博信息抓取的同学,可能曾经遇到过这么个问题:保存到本地的html文件打开都能看到所有信息啊,为啥在页面源码中找不到呢?因为PC端微博页面的关键信息都是像下图这样,被

1
1`

FM.view()

1
1`

包裹起来的,里面的数据可能被*json encode*过。
如何构建一个分布式爬虫:实战篇

那么这么多的

1
1`

FM.view()

1
1`

,我们怎么知道该提取哪个呢?这里有一个小技巧,
由于只有中文会被编码,英文还是原来的样子,所以我们可以看哪段script中包含了渲染后的页面中的字符,那么那段应该就可能包含所有页面信息。我们这里以顶部的头像为例,如图
如何构建一个分布式爬虫:实战篇

我们在页面源码中搜索,只发现一个script中有该字符串,那么就是那段script是页面相关信息。我们可以通过正则表达式把该script提取出来,然后把其中的

1
1`

html

1
1`

也提取出来,再保存到本地,看看信息是否全面。这里我就不截图了。感觉还有很多要写的,不然篇幅太长了。

另外,对于具体页面的解析,我也不做太多的介绍了。太细的东西还是建议读读源码。我只讲一下,我觉得的一种处理异常的比较优雅的方式。微博爬虫的话,主要是页面样式太多,如果你打算包含所有不同的用户的模版,那么我觉得几乎不可能,不同用户模版,用到的解析规则就不一样。那么出现解析异常如何处理?尤其是你没有catch到的异常。很可能因为这个问题,程序就崩掉。其实对于Python这门语言来说,我们可以通过 **装饰器** 来捕捉我们没有考虑到的异常,比如我这个装饰器


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
1def parse_decorator(return_type):
2    """
3    :param return_type: 用于捕捉页面解析的异常, 0表示返回数字0, 1表示返回空字符串, 2表示返回[],3表示返回False, 4表示返回{}, 5返回None
4    :return: 0,'',[],False,{},None
5    """
6    def page_parse(func):
7        @wraps(func)
8        def handle_error(*keys):
9            try:
10                return func(*keys)
11            except Exception as e:
12                parser.error(e)
13
14                if return_type == 5:
15                    return None
16                elif return_type == 4:
17                    return {}
18                elif return_type == 3:
19                    return False
20                elif return_type == 2:
21                    return []
22                elif return_type == 1:
23                    return ''
24                else:
25                    return 0
26        return handle_error
27    return page_parse
28
29

上面的代码就是处理解析页面发生异常的情况,我们只能在数据的准确性、全面性和程序的健壮性之间做一些取舍。用装饰器的话,程序中不用写太多的

1
1`

try

1
1`

语句,代码重复率也会减少很多。

页面的解析由于篇幅所限,我就讲到这里了。没有涉及太具体的解析,其中一个还有一个比较难的点,就是
数据的全面性,读者可以去多观察几个微博用户的个人信息,就会发现有的个人信息,有的用户有填写,有的并没有。解析的时候要考虑完的话,建议
从自己的微博的个人信息入手,看到底有哪些可以填。这样可以保证几乎不会漏掉一些重要的信息。


最后,我再切合本文的标题,讲如何搭建一个分布式的微博爬虫。
开发过程中,我们可以先就做单机单线程的爬虫,然后再改成使用celery的方式。这里这样做是为了方便开发和测试,因为你单机搭起来并且跑得通了,那么分布式的话,就很容易改了,因为celery的API使用本来就很简洁。

我们抓取的是用户信息和他的关注和粉丝uid。用户信息的话,我们一个请求大概能抓取一个用户的信息,而粉丝和关注我们一个请求可以抓取18个左右(因为这个抓的是列表),显然可以发现**用户信息应该多占一些请求的资源**。这时候就该介绍如何构建一个分布式爬虫:理论篇没有介绍的关于celery的一个高级特性了,它叫做
任务路由。
直白点说,它可以规定哪个分布式节点能做哪些任务,不能做哪些任务。它的存在可以让资源分配更加合理,分布式微博爬虫(ResolveWang/WeiboSpider)项目初期,就没有使用任务路由,然后抓了十多万条关注和粉丝,发现用户信息只有几万条,这就是资源分配得不合理。那么如何进行任务路由呢


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
1# coding:utf-8
2import os
3from datetime import timedelta
4from celery import Celery
5from kombu import Exchange, Queue
6from config.conf import get_broker_or_backend
7from celery import platforms
8
9# 允许celery以root身份启动
10platforms.C_FORCE_ROOT = True
11
12worker_log_path = os.path.join(os.path.dirname(os.path.dirname(__file__))+'/logs', 'celery.log')
13beat_log_path = os.path.join(os.path.dirname(os.path.dirname(__file__))+'/logs', 'beat.log')
14
15tasks = ['tasks.login', 'tasks.user']
16
17# include的作用就是注册服务化函数
18app = Celery('weibo_task', include=tasks, broker=get_broker_or_backend(1), backend=get_broker_or_backend(2))
19
20app.conf.update(
21    CELERY_TIMEZONE='Asia/Shanghai',
22    CELERY_ENABLE_UTC=True,
23    CELERYD_LOG_FILE=worker_log_path,
24    CELERYBEAT_LOG_FILE=beat_log_path,
25    CELERY_ACCEPT_CONTENT=['json'],
26    CELERY_TASK_SERIALIZER='json',
27    CELERY_RESULT_SERIALIZER='json',
28    CELERY_QUEUES=(
29        Queue('login_queue', exchange=Exchange('login', type='direct'), routing_key='for_login'),
30        Queue('user_crawler', exchange=Exchange('user_info', type='direct'), routing_key='for_user_info'),
31        Queue('fans_followers', exchange=Exchange('fans_followers', type='direct'), routing_key='for_fans_followers'),
32)
33
34

上述代码我指定了有

1
1`

login_queue

1
1`

1
1`

user_crawler

1
1`

1
1`

fans_followers

1
1`

三个任务队列。它们分别的作用是登录、用户信息抓取、粉丝和关注抓取。现在假设我有三台爬虫服务器A、B和C。我想让我所有的账号登录任务分散到三台服务器、让用户抓取在A和B上执行,让粉丝和关注抓取在C上执行,那么启动A、B、C三个服务器的celery worker的命令就分别是

celery -A tasks.workers -Q login_queue,user_crawler worker -l info -c 1 # A服务器和B服务器启动worker的命令,它们只会执行登录和用户信息抓取任务
celery -A tasks.workers -Q login_queue,fans_followers worker -l info -c 1 # C服务器启动worker的命令,它只会执行登录、粉丝和关注抓取任务

然后我们通过命令行或者代码(如下)就能发送所有任务给各个节点执行了


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
1# coding:utf-8
2from tasks.workers import app
3from page_get import user as user_get
4from db.seed_ids import get_seed_ids, get_seed_by_id, insert_seeds, set_seed_other_crawled
5
6@app.task(ignore_result=True)
7def crawl_follower_fans(uid):
8    seed = get_seed_by_id(uid)
9    if seed.other_crawled == 0:
10        rs = user_get.get_fans_or_followers_ids(uid, 1)
11        rs.extend(user_get.get_fans_or_followers_ids(uid, 2))
12        datas = set(rs)
13        # 重复数据跳过插入
14        if datas:
15            insert_seeds(datas)
16        set_seed_other_crawled(uid)
17@app.task(ignore_result=True)
18def crawl_person_infos(uid):
19    """
20    根据用户id来爬取用户相关资料和用户的关注数和粉丝数(由于微博服务端限制,默认爬取前五页,企业号的关注和粉丝也不能查看)
21    :param uid: 用户id
22    :return:
23    """
24    if not uid:
25        return
26
27    # 由于与别的任务共享数据表,所以需要先判断数据库是否有该用户信息,再进行抓取
28    user = user_get.get_profile(uid)
29    # 不抓取企业号
30    if user.verify_type == 2:
31        set_seed_other_crawled(uid)
32        return
33    app.send_task('tasks.user.crawl_follower_fans', args=(uid,), queue='fans_followers',
34                  routing_key='for_fans_followers')
35
36
37@app.task(ignore_result=True)
38def excute_user_task():
39    seeds = get_seed_ids()
40    if seeds:
41        for seed in seeds:
42            # 在send_task的时候指定任务队列
43            app.send_task('tasks.user.crawl_person_infos', args=(seed.uid,), queue='user_crawler',
44                          routing_key='for_user_info')
45
46

这里我们是通过

1
1`

queue='user_crawler',routing_key='for_user_info'

1
1`

来将任务和worker进行关联的。

关于celery任务路由的更详细的资料请阅读官方文档(Routing Tasks – Celery 4.0.2 documentation)。

到这里,基本把微博信息抓取的过程和分布式进行抓取的过程都讲完了,具体实现分布式的方法,可以读读基础篇(如何构建一个分布式爬虫:基础篇)。由于代码量比较大,我并没有贴上完整的代码,只讲了要点。分析过程是讲的抓取过程的分析和页面解析的分析,并在最后,结合分布式,讲了一下使用任务队列来让分布式爬虫更加灵活和可扩展。

如果有同学想跟着做一遍,可能需要参考分布式微博爬虫( ResolveWang/WeiboSpider )的源码,自己动手实现一下,或者跑一下,印象可能会更加深刻。

给TA打赏
共{{data.count}}人
人已打赏
安全经验

职场中的那些话那些事

2021-9-24 20:41:29

安全经验

Mysql 慢查询和慢查询日志分析

2021-11-28 16:36:11

个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索