Kafka、RabbitMQ、RocketMQ等 消息中间件 介绍和对比

释放双眼,带上耳机,听听看~!

文章目录

  • 1、前言

  • 2、概念

    • 2.1、MQ简介

    • 2.2、MQ特点

      • 2.2.1、先进先出

      • 2.2.2、发布订阅

      • 2.2.3、持久化

      • 2.2.4、分布式

  • 3、消息中间件性能究竟哪家强?

    • 3.1、Kafka
    • 3.2、RabbitMQ
    • 3.3、RocketMQ
  • 4、测试

    • 4.1、测试目的

    • 4.2、测试场景

      • 4.2.1、Kafka
      • 4.2.2、RocketMQ
      • 4.2.3、RabbitMQ
    • 4.3、测试结论

  • 5、消息队列优点对比

    • 5.1、各个消息队列

      • 5.1.1、RabbitMQ
      • 5.1.2、Redis
      • 5.1.3、ZeroMQ
      • 5.1.4、ActiveMQ
      • 5.1.5、Jafka/Kafka
    • 5.2、其他对比

      • 5.2.1、Rabbitmq比kafka可靠,kafka更适合IO高吞吐的处理,比如ELK日志收集
      • 5.2.2、redis 消息推送是基于分布式 pub/sub,多用于实时性较高的消息推送,并不保证可靠。
      • 5.2.3、redis主要做内存数据库
    • 5.3、在应用场景方面

    • 5.3.1、RabbitMQ

    • 5.3.2、kafka

    • 5.3.3、ActiveMQ

    • 5.4、架构模型方面

      • 5.4.1、RabbitMQ
      • 5.4.2、kafka
    • 5.5、吞吐量方面

      • 5.5.1、kafka
      • 5.5.2、rabbitMQ
    • 5.6、可用性方面

      • 5.6.1、rabbitMQ
      • 5.6.2、kafka
    • 5.7、集群负载均衡方面

      • 5.7.1、kafka

      • 5.7.2、rabbitMQ

  • 6、其他

 

1、前言

在分布式系统中,我们广泛运用消息中间件进行系统间的数据交换,便于异步解耦。现在开源的消息中间件有很多,前段时间产品 RocketMQ (MetaQ的内核) 也顺利开源,得到大家的关注。

2、概念

2.1、MQ简介

MQ,Message queue,消息队列,就是指保存消息的一个容器。具体的定义这里就不类似于数据库、缓存等,用来保存数据的。当然,与数据库、缓存等产品比较,也有自己一些特点,具体的特点后文会做详细的介绍。
现在常用的MQ组件有ActiveMQ、RabbitMQ、RocketMQ、ZeroMQ、MetaMQ,当然近年来火热的kafka,从某些场景来说,也是MQ,当然kafka的功能更加强大,虽然不同的MQ都有自己的特点和优势,但是,不管是哪种MQ,都有MQ本身自带的一些特点,下面,介绍MQ的特点。

2.2、MQ特点

2.2.1、先进先出

不能先进先出,都不能说是队列了。消息队列的顺序在入队的时候就基本已经确定了,一般是不需人工干预的。而且,最重要的是,数据是只有一条数据在使用中。 这也是MQ在诸多场景被使用的原因。

2.2.2、发布订阅

发布订阅是一种很高效的处理方式,如果不发生阻塞,基本可以当做是同步操作。这种处理方式能非常有效的提升服务器利用率,这样的应用场景非常广泛。

2.2.3、持久化

持久化确保MQ的使用不只是一个部分场景的辅助工具,而是让MQ能像数据库一样存储核心的数据。

2.2.4、分布式

在现在大流量、大数据的使用场景下,只支持单体应用的服务器软件基本是无法使用的,支持分布式的部署,才能被广泛使用。而且,MQ的定位就是一个高性能的中间件。
应用场景

3、消息中间件性能究竟哪家强?

带着这个疑问,我们中间件测试组对常见的三类消息产品(Kafka、RabbitMQ、RocketMQ)做了性能比较。

3.1、Kafka

Kafka是LinkedIn开源的分布式发布-订阅消息系统,目前归属于Apache顶级项目。Kafka主要特点是基于Pull的模式来处理消息消费,追求高吞吐量,一开始的目的就是用于日志收集和传输。0.8版本开始支持复制,不支持事务,对消息的重复、丢失、错误没有严格要求,适合产生大量数据的互联网服务的数据收集业务。

3.2、RabbitMQ

RabbitMQ是使用Erlang语言开发的开源消息队列系统,基于AMQP协议来实现。AMQP的主要特征是面向消息、队列、路由(包括点对点和发布/订阅)、可靠性、安全。AMQP协议更多用在企业系统内,对数据一致性、稳定性和可靠性要求很高的场景,对性能和吞吐量的要求还在其次。

3.3、RocketMQ

RocketMQ是阿里开源的消息中间件,它是纯Java开发,具有高吞吐量、高可用性、适合大规模分布式系统应用的特点。RocketMQ思路起源于Kafka,但并不是Kafka的一个Copy,它对消息的可靠传输及事务性做了优化,目前在阿里集团被广泛应用于交易、充值、流计算、消息推送、日志流式处理、binglog分发等场景。

4、测试

4.1、测试目的

对比Kafka、RabbitMQ、RocketMQ发送小消息(124字节)的性能。这次压测我们只关注服务端的性能指标,所以压测的标准是:

不断增加发送端的压力,直到系统吞吐量不再上升,而响应时间拉长。这时服务端已出现性能瓶颈,可以获得相应的系统最佳吞吐量。

4.2、测试场景

在同步发送场景中,三个消息中间件的表现区分明显:

4.2.1、Kafka

Kafka的吞吐量高达17.3w/s,不愧是高吞吐量消息中间件的行业老大。这主要取决于它的队列模式保证了写磁盘的过程是线性IO。此时broker磁盘IO已达瓶颈。

4.2.2、RocketMQ

RocketMQ也表现不俗,吞吐量在11.6w/s,磁盘IO %util已接近100%。RocketMQ的消息写入内存后即返回ack,由单独的线程专门做刷盘的操作,所有的消息均是顺序写文件。

4.2.3、RabbitMQ

RabbitMQ的吞吐量5.95w/s,CPU资源消耗较高。它支持AMQP协议,实现非常重量级,为了保证消息的可靠性在吞吐量上做了取舍。我们还做了RabbitMQ在消息持久化场景下的性能测试,吞吐量在2.6w/s左右。

4.3、测试结论

Kafka、RabbitMQ、RocketMQ等 消息中间件 介绍和对比
在服务端处理同步发送的性能上,Kafka>RocketMQ>RabbitMQ。
附录:
测试环境
服务端为单机部署,机器配置如下:
Kafka、RabbitMQ、RocketMQ等 消息中间件 介绍和对比
应用版本:
Kafka、RabbitMQ、RocketMQ等 消息中间件 介绍和对比
测试脚本
Kafka、RabbitMQ、RocketMQ等 消息中间件 介绍和对比

5、消息队列优点对比

前面我们对比了最简单的小消息发送场景,Kafka暂时胜出。但是,作为经受过历次双十一洗礼的RocketMQ,在互联网应用场景中更有它优越的一面。

5.1、各个消息队列

5.1.1、RabbitMQ

是使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发。同时实现了一个经纪人(Broker)构架,这意味着消息在发送给客户端时先在中心队列排队。对路由(Routing),负载均衡(Load balance)或者数据持久化都有很好的支持。

5.1.2、Redis

是一个Key-Value的NoSQL数据库,开发维护很活跃,虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。

5.1.3、ZeroMQ

号称最快的消息队列系统,尤其针对大吞吐量的需求场景。ZMQ能够实现RabbitMQ不擅长的高级/复杂的队列,但是开发人员需要自己组合多种技术框架,技术上的复杂度是对这MQ能够应用成功的挑战。ZeroMQ具有一个独特的非中间件的模式,你不需要安装和运行一个消息服务器或中间件,因为你的应用程序将扮演了这个服务角色。你只需要简单的引用ZeroMQ程序库,可以使用NuGet安装,然后你就可以愉快的在应用程序之间发送消息了。但是ZeroMQ仅提供非持久性的队列,也就是说如果down机,数据将会丢失。其中,Twitter的Storm中使用ZeroMQ作为数据流的传输。

5.1.4、ActiveMQ

Apache ActiveMQ 是最受欢迎且功能最强大的开源消息传递和Integration Patterns服务器。
Apache ActiveMQ速度快,支持许多跨语言客户端和协议,带有易于使用的企业集成模式和许多高级功能,同时完全支持JMS 1.1和J2EE 1.4。Apache ActiveMQ是在Apache 2.0许可下发布
特征
支持Java消息服务(JMS) 1.1 版本
Spring Framework
集群 (Clustering)
支持的编程语言包括:C、C++、C#、Delphi、Erlang、Adobe Flash、Haskell、Java、JavaScript、Perl、PHP、Pike、Python和Ruby
协议支持包括:OpenWire、REST、STOMP、WS-Notification、MQTT、XMPP以及AMQP [1]

5.1.5、Jafka/Kafka

Kafka是Apache下的一个子项目,是一个高性能跨语言分布式Publish/Subscribe消息队列系统,而Jafka是在Kafka之上孵化而来的,即Kafka的一个升级版。具有以下特性:快速持久化,可以在O(1)的系统开销下进行消息持久化;高吞吐,在一台普通的服务器上既可以达到10W/s的吞吐速率;完全的分布式系统,Broker、Producer、Consumer都原生自动支持分布式,自动实现复杂均衡;支持Hadoop数据并行加载,对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka通过Hadoop的并行加载机制来统一了在线和离线的消息处理,这一点也是本课题所研究系统所看重的。Apache Kafka相对于ActiveMQ是一个非常轻量级的消息系统,除了性能非常好之外,还是一个工作良好的分布式系统。

5.2、其他对比

5.2.1、Rabbitmq比kafka可靠,kafka更适合IO高吞吐的处理,比如ELK日志收集

Kafka和RabbitMq一样是通用意图消息代理,他们都是以分布式部署为目的。但是他们对消息语义模型的定义的假设是非常不同的。我对"AMQP 更成熟"这个论点是持怀疑态度的。让我们用事实说话来看看用什么解决方案来解决你的问题。
a) 以下场景你比较适合使用Kafka。你有大量的事件(10万以上/秒)、你需要以分区的,顺序的,至少传递成功一次到混杂了在线和打包消费的消费者、你希望能重读消息、你能接受目前是有限的节点级别高可用或则说你并不介意通过论坛/IRC工具得到还在幼儿阶段的软件的支持。
b) 以下场景你比较适合使用RabbitMQ。你有较少的事件(2万以上/秒)并且需要通过复杂的路由逻辑去找到消费者、你希望消息传递是可靠的、你并不关心消息传递的顺序、你需要现在就支持集群-节点级别的高可用或则说你需要7*24小时的付费支持(当然也可以通过论坛/IRC工具)。

5.2.2、redis 消息推送是基于分布式 pub/sub,多用于实时性较高的消息推送,并不保证可靠。

redis 消息推送(基于分布式 pub/sub)多用于实时性较高的消息推送,并不保证可靠。其他的mq和kafka保证可靠但有一些延迟(非实时系统没有保证延迟)。redis-pub/sub断电就清空,而使用redis-list作为消息推送虽然有持久化,但是又太弱智,也并非完全可靠不会丢。另外一点,redis 发布订阅除了表示不同的 topic 外,并不支持分组,比如kafka中发布一个东西,多个订阅者可以分组,同一个组里只有一个订阅者会收到该消息,这样可以用作负载均衡。比如,kafka 中发布:topic = “发布帖子” data=“文章1” 这个消息,后面有一百台服务器每台服务器都是一个订阅者,都订阅了这个 topic,但是他们可能分为三组,A组50台,用来真的做发布文章,A组50台里所有 subscriber 都订阅了这个topic。由于在同一组,这条消息 (topic=“发布帖子”, data=“文章1”)只会被A组里面一台当前空闲的机器收到。而B组25台服务器用于统计,C组25台服务器用于存档备份,每组只有一台会收到。用不同的组来决定每条消息要抄送出多少分去,用同组内哪些订阅者忙,哪些订阅者空闲来决定消息会被分到哪台服务器去处理,生产者消费者模型嘛。redis完全没有这类机制,这两点是最大的区别。

5.2.3、redis主要做内存数据库

redis作者做内存数据库基础上增加了消息pub/sub。mq一般都采用订阅~发布模型,如果你考虑性能,主要关注点就放在消费模型是pull还是push。影响最大的,应该是存储结构。kafka的性能要在topic数量小于64的时候,才能发挥威力。partition决定的。极限情况下丢消息,例如:主写入消息后,主机器宕机,并硬盘损坏。review代码的时候发现的。rabbit不知道,但是rocket的性能是(万条每秒),并且能够横向无限扩展,单机topic数量在256时,性能损失较小。rocket可以说是kafka的变种,是阿里在充分reviewkafka代码后,开发的metaQ。在不断更新,修补以后,阿里把metaQ3.0更名为rocket,并且rocket是java写的易于维护。另外就是rocket和kafka有类似无限堆积的能力。想想,断电不丢消息,积压两亿条消息毫无压力,niubility kafka和rocket mq性能根本不需要考虑的问题。

5.3、在应用场景方面

5.3.1、RabbitMQ

RabbitMQ遵循AMQP协议,由内在高并发的erlanng语言开发,用在实时的对可靠性要求比较高的消息传递上,适合企业级的消息发送订阅,也是比较受到大家欢迎的。

5.3.2、kafka

kafka是Linkedin于2010年12月份开源的消息发布订阅系统,它主要用于处理活跃的流式数据,大数据量的数据处理上。常用日志采集,数据采集上。

5.3.3、ActiveMQ

  • 异步调用
  • 一对多通信
  • 做多个系统的集成,同构、异构
  • 作为RPC的替代
  • 多个应用相互解耦
  • 作为事件驱动架构的幕后支撑
  • 为了提高系统的可伸缩性

5.4、架构模型方面

5.4.1、RabbitMQ

RabbitMQ遵循AMQP协议,RabbitMQ的broker由Exchange,Binding,queue组成,其中exchange和binding组成了消息的路由键;客户端Producer通过连接channel和server进行通信,Consumer从queue获取消息进行消费(长连接,queue有消息会推送到consumer端,consumer循环从输入流读取数据)。rabbitMQ以broker为中心;有消息的确认机制。

5.4.2、kafka

kafka遵从一般的MQ结构,producer,broker,consumer,以consumer为中心,消息的消费信息保存的客户端consumer上,consumer根据消费的点,从broker上批量pull数据;无消息确认机制。

5.5、吞吐量方面

5.5.1、kafka

kafka具有高的吞吐量,内部采用消息的批量处理,zero-copy机制,数据的存储和获取是本地磁盘顺序批量操作,具有O(1)的复杂度,消息处理的效率很高。

5.5.2、rabbitMQ

rabbitMQ在吞吐量方面稍逊于kafka,他们的出发点不一样,rabbitMQ支持对消息的可靠的传递,支持事务,不支持批量的操作;基于存储的可靠性的要求存储可以采用内存或者硬盘。

5.6、可用性方面

5.6.1、rabbitMQ

rabbitMQ支持miror的queue,主queue失效,miror queue接管。

5.6.2、kafka

kafka的broker支持主备模式。

5.7、集群负载均衡方面

5.7.1、kafka

kafka采用zookeeper对集群中的broker、consumer进行管理,可以注册topic到zookeeper上;通过zookeeper的协调机制,producer保存对应topic的broker信息,可以随机或者轮询发送到broker上;并且producer可以基于语义指定分片,消息发送到broker的某分片上。

5.7.2、rabbitMQ

rabbitMQ的负载均衡需要单独的loadbalancer进行支持。

6、其他

Kafka是可靠的分布式日志存储服务。用简单的话来说,你可以把Kafka当作可顺序写入的一大卷磁带, 可以随时倒带,快进到某个时间点重放。先说下日志的定义:日志是数据库的核心,是对数据库的所有变更的严格有序记录,“表”是变更的结果。日志的其他名字有: Changelog, Write Ahead Log, Commit Log, Redo Log, Journaling.Kafka的特征如下:高写入速度:Kafka能以超过1Gbps NIC的速度写这盘磁带(实际可以到SATA 3速度,参考Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three Cheap Machines)),充分利用了磁盘的物理特性,即,随机写入慢(磁头冲停),顺序写入快(磁头悬浮)。高可靠性: 通过zookeeper做分布式一致性,同步到任意多块磁盘上,故障自动切换选主,自愈。高容量:通过横向扩展,LinkedIn每日通过Kafka存储的新增数据高达175TB,8000亿条消息,可无限扩容,类似把两条磁带粘到一起。传统业务数据库的根本缺陷在于:

  1. 太慢,读写太昂贵,无法避免的随机寻址。(磁盘最快5ms寻址,固态又太昂贵。)
  2. 根本无法适应持续产生的数据流,越用越慢。(索引效率问题)
  3. 无法水平scale。(多半是读写分离,一主多备。另: NewSQL通过一致性算法,有多主。)

针对这些问题,Kafka提出了一种方法: “log-centric approach(以日志为中心的方法)。”将传统数据库分为两个独立的系统,即日志系统和索引系统。“持久化和索引分开,日志尽可能快的落地,索引按照自己的速度追赶。”在数据可靠性在得到Kafka这种快速的,类似磁带顺序记录方式保障的大前提下。数据的呈现,使用方式变得非常灵活,可以根据需要将数据流同时送入搜索系统,RDBMS系统,数据仓库系统, 图数据库系统,日志分析等这些各种不同的数据库系统。 这些不同的系统只不过是一种对Kafka磁带数据的一种诠释,一个侧面,一个索引,一个快照。数据丢了,没关系,重放一遍磁带即可,更多的时候,对这些各式数据库系统的维护只是需要定期做一个快照,并拷贝到一个安全的对象存储(如S3) 而已。 一句话:“日志都是相同的日志,索引各有各的不同。”关于流计算:在以流为基本抽象的存储模型下,数据流和数据流之间,可以多流混合处理,或者流和状态,状态和状态的JOIN处理,这就是Kafka Stream提供的功能。 一个简单的例子是,在用户触发了某个事件后,和用户表混合处理,产生数据增补(Augment),再进入数据仓库进行相关性分析,一些简单的窗口统计和实时分析也很容易就能满足,比如 在收到用户登录消息的时候,在线人数+1, 离线的时候-1,反应出当前系统的在线用户总数。

这方面可以参考《PipelineDB》 https://www.pipelinedb.com/Kafka

给TA打赏
共{{data.count}}人
人已打赏
安全网络

CDN安全市场到2022年价值76.3亿美元

2018-2-1 18:02:50

安全技术

JAVA I/O 、NIO 文件读写性能对比

2022-1-11 12:36:11

个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索